API Reference#

Multifractal Analysis#

pymultifracs.mfa:

mf_analysis(mrq, scaling_ranges[, weighted, ...])

Perform multifractal analysis, given wavelet coefficients.

Dataclasses#

Used to compute and store intermediary results

multiresquantity.MultiResolutionQuantity(...)

Handles multi-resolution quantities in multifractal analysis.

cumulants.Cumulants(mrq, n_cumul, ...)

Computes and analyzes cumulants

structurefunction.StructureFunction(mrq, q, ...)

Computes and analyzes structure functions

mfspectrum.MultifractalSpectrum(mrq, ...[, ...])

Estimates the Multifractal Spectrum

Storing the multifractal analysis output

utils.MFractalVar(structure, cumulants, ...)

Aggregates the output of multifractal analysis

Wavelet Analysis#

pymultifracs.wavelet:

decomposition_level(length, wt_name)

Checks the maximum scale which can be used to decompose a signal of given length

wavelet_analysis(signal[, p_exp, wt_name, ...])

Compute wavelet coefficient and wavelet leaders.

WaveletTransform(wt_coefs, wt_leaders, ...)

Aggregates the output of wavelet analysis

Simulation#

pymultifracs.simul:

mrw(shape, H, lam, L[, sigma, method, z0])

Create a realization of fractional Brownian motion using circulant matrix embedding.

fbm(*args, **kwargs)

Computing and Plotting PSDs#

pymultifracs.psd:

plot_psd(signal, fs[, n_fft, seg_size, ...])

Plot the superposition of Fourier-based Welch estimation and Wavelet-based estimation of PSD on a log-log graphic.

wavelet_estimation(signal, fs, n_moments[, ...])

PSD estimation based on Wavelet coefficients

welch_estimation(signal, fs[, n_fft, seg_size])

Wrapper for scipy.signal.welch

PSD(freq, psd)

Aggregates power spectral density information

Utility functions#

pymultifracs.utils:

scale2freq(scale, sfreq)

freq2scale(freq, sfreq)